[文字サイズの変更]
 
©2025 数学クラブ http://sugaku.club/
月     日(     ) 
● 次の直線の式を求めなさい.      [1Y7-00]
(1) を通る直線
 (−2−1)(0−3)
 
(2) を通る直線
 (−47)(3−7)
 
(3) を通る直線
 (−57)(−45)
 
(4)  10 を通る直線
 (−4)(3−1)
  3 
 
 
©2025 数学クラブ http://sugaku.club/
月     日(     ) 
【解答例】
(1) を通る直線
 (−2−1)(0−3)
 
【解法1】
    傾きは,2点を通るので, x が 0−(-2) 増加すると,y は 増加する.
 −3(−1)
 
    一次関数式を    ---  (1)
 y=axb
 
    とすると,傾き a は,
−3(−1)
である.
 a==−1
 
0(−2)
    a および を (1)式 に代入してbを求める
 (−2−1)
 
    
 −1=−1×(−2)b
 
    
 b=−3
 
(2) を通る直線
 (−47)(3−7)
 
【解法2】
    2点を に代入し連立方程式により a,bを求める
 y=axb
 
     
 7=−4ab
 
 −7=3ab
 
    
 (ab)=(−2−1)
 
(3) を通る直線
 (−57)(−45)
 
(4)  10 を通る直線
 (−4)(3−1)
  3 
  1. (1)
  2.  y=x3
     
  3. (2)
  4.  y=−2x1
     
  5. (3)
  6.  y=−2x3
     
  7. (4)
  8.  1 
     y=x2
      3