[文字サイズの変更]
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
● 平行四辺形の定理を使った証明      [2M3-z0]
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


 
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
【解答例】
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


△BOFと△DOEで
平行四辺形の特徴より
    BO=DO    ---①
    AD//BC    ---②

② から,平行線の錯角は等しいので
    ∠OBF=∠ODE    ---③

また,対頂角は等しいので
    ∠BOF=∠DOE    ---④

① ③ ④ から,
1組の辺とその両端の角がそれぞれ等しいので
    △BOF≡△DOE

合同な図形では 対応する辺は等しいので
    OF=OE