[文字サイズの変更]
 
©2024 数学クラブ http://sugaku.club/
月     日(     ) 
● 相似の証明      [2X2-00]
次の図で,四角形ABCDは長方形です.BEを折り目として,頂点Cが辺AD上にくるように折る.頂点Cと重なる点をFとするとき,△DEF∽△AFBであることを証明しなさい.
A
B
C
D
E
F
 
 
©2024 数学クラブ http://sugaku.club/
月     日(     ) 
【解答例】
次の図で,四角形ABCDは長方形です.BEを折り目として,頂点Cが辺AD上にくるように折る.頂点Cと重なる点をFとするとき,△DEF∽△AFBであることを証明しなさい.
A
B
C
D
E
F
△DFEと△AFBにおいて
四角形ABCDは長方形だから
    ∠EDF=∠FAB=90°    ---①
    ∠EFB=90°    ---②

△DFEの内角の和は180°であるから
    ∠DFE+∠FED+∠EDF=180°
①より ∠DFE+∠FED=90°    ---③

また,D,F,Aは直線上に並ぶから
    ∠DFE+∠EFB+∠BFA=180°
②より ∠DFE+∠BFA=90°    ---④

③ ④ から,
    ∠FED=∠BFA    ---⑤

① ⑤ から,2組の角がそれぞれ等しい ので

    △DEF∽△AFB