[文字サイズの変更]
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
● 平行線と線分比の証明2      [2Y2-00]
(1) 次の図で,l//m//n ならば BC:AB=EF:DE であることを証明しなさい.ただし,直線b'はAを通り直線bに平行な直線である.
A
B
C
D
E
F
G
H
l
m
n
a
b'
b
 
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
【解答例】
(1) 次の図で,l//m//n ならば BC:AB=EF:DE であることを証明しなさい.ただし,直線b'はAを通り直線bに平行な直線である.
A
B
C
D
E
F
G
H
l
m
n
a
b'
b
△ABGと△ACHにおいて
仮定m//nより,同位角は等しいから,∠ABG=∠ACH,∠AGB=∠AHC
2組の角がそれぞれ等しい ので,△ABG∽△ACH
相似な図形では,対応する辺の比は等しいので
 ACAB
 
 =AHAG
 
 ABBCAB
 
 =AGGHAG
 
ABBC
 
 
AB
AGGH
 =
 
AG
BC
 
 
AB
GH
 =
 
AG
 BCAB
 
    ---①
 =GHAG
 
仮定l//mより  AD//GE  また,  AG//DEから四角形AGEDは平行四辺形であり,向かい合う辺の長さは等しいので
    AG=DE    ---②
同様に,GH=EF    ---③
①②③より
    BC:AB=EF:DE