[文字サイズの変更]
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
● 二等辺三角形の定理を使った証明      [2i2-z0]
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


 
 
©2018 数学クラブ http://sugaku.club/
月     日(     ) 
【解答例】
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


△DBCと△ECBで
仮定より
    BD=CE    ---①
    DC=EB    ---②

BCは共通なので
    BC=CB    ---③

①②③より,3組の辺がそれぞれ等しいので
    △DBC≡△ECB

合同な図形では,対応する角は等しいので
    ∠DBC=∠ECB

したがって,△ABCは二等辺三角形である.