[文字サイズの変更]
 
数学クラブ
証明
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=4cmのとき,BCの大きさ

A
40°
B
C
50°
D
E
F
1
2
3
4
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
7cm
45°
A
B
55°
C

7cm
50°
D
6cm
E
F

6cm
G
3cm
H
5cm
I

7cm
50°
J
6cm
K
L

6cm
M
3cm
N
5cm
O

7cm
45°
P
Q
55°
R

(1)



(2)



(3)



@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCについて ∠A=a,∠B=b ならば ∠c=180-a-c である.
(2) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(3) xy ならば x−6<y−6 である.
(1) 仮定

結論

(2) 仮定

結論

(3) 仮定

結論

4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AO=DO,BO=COならば,△ABO≡△DCOであることを証明しなさい.
A
B
C
D
O
△ABOと△DCOにおいて
仮定より,
    AO=DO    ---①
                        ---②

            は等しいから

    ∠AOB=∠DOC    ---③

① ② ③ から,                                                  ので

    △ABO≡△DCO
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=CD,AD=CBならば,∠BAC=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△CDAにおいて
仮定より,
    AB=CD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△CDA

合同な図形では 対応する角の大きさは等しいので

                    
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AB=AD,CB=CDならば,∠B=∠Dであることを証明しなさい.
A
B
C
D

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=CO,BO=DOならば,AB=DCであることを証明しなさい.
A
B
C
D
O

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,DB=AC,∠BDA=∠CADならば,AB=DCであることを証明しなさい.
A
B
C
D

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=4cmのとき,BCの大きさ

A
40°
B
C
50°
D
E
F
1 ∠A=50°   
2 ∠E=40°   
3 ∠C=90°   
4 BC=4cm
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
7cm
45°
A
B
55°
C

7cm
50°
D
6cm
E
F

6cm
G
3cm
H
5cm
I

7cm
50°
J
6cm
K
L

6cm
M
3cm
N
5cm
O

7cm
45°
P
Q
55°
R

(1)   △GHI≡△MNO
3組の辺がそれぞれ等しい
(2) △DEF≡△JKL
2組の辺とその間の角がそれぞれ等しい
(3) △ABC≡△PQR
1組の辺とその両端の角がそれぞれ等しい.
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCについて ∠A=a,∠B=b ならば ∠c=180-a-c である.
(2) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(3) xy ならば x−6<y−6 である.
(1) 仮定  ∠A=a,∠B=b
結論  ∠c=180-a-c
(2) 仮定  AB=DE ,∠A=∠D ,∠B=∠E
結論  △ABC≡△DEF
(3) 仮定  xy
結論  x−6<y−6
4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AO=DO,BO=COならば,△ABO≡△DCOであることを証明しなさい.
A
B
C
D
O
△ABOと△DCOにおいて
仮定より,
    AO=DO    ---①
     BO = CO     ---②

 対頂角 は等しいから

    ∠AOB=∠DOC    ---③

① ② ③ から, 2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△DCO
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=CD,AD=CBならば,∠BAC=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=CD    ---①
     AD = CB     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△CDA

合同な図形では 対応する角の大きさは等しいので

     ∠BAC = ∠DCA 
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AB=AD,CB=CDならば,∠B=∠Dであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
    CB=CD    ---②

また,ACは共通だから

    AC=AC    ---③

① ② ③ から,3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

    ∠B=∠D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=CO,BO=DOならば,AB=DCであることを証明しなさい.
A
B
C
D
O

△ABOと△CDOにおいて
仮定より,
    AO=CO    ---①
    BO=DO    ---②

対頂角は等しいから

    ∠AOB=∠COD    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△CDO

合同な図形では 対応する辺の大きさは等しいので

    AB=DC
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

△ABOと△DCOにおいて,三角形の内角の和は180°だから,

    ∠A+∠B+∠AOB=180°    ---①
    ∠C+∠D+∠DOC=180°    ---②

① ② から,

    ∠A+∠B+∠AOB=∠C+∠D+∠DOC    ---③

また,対頂角は等しいので

    ∠AOB=∠DOC    ---④

③ ④ から,

    ∠A+∠B=∠C+∠D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,DB=AC,∠BDA=∠CADならば,AB=DCであることを証明しなさい.
A
B
C
D

△ABDと△DCAにおいて,
仮定より,

    DB=AC    ---①
    ∠BDA=∠CAD    ---②

また,DA は共通    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABD≡△DCA

合同な図形では 対応する辺の大きさは等しいので

    AB=DC
余白に記入
@2017    http://sugaku.club/