[文字サイズの変更]
 
数学クラブ
証明
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
四角形ABCDと四角形EFGHは合同である.対応する角または辺について答えなさい.

1. ∠Bの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=6cmのとき,ABの大きさ

65°
A
B
C
115°
D
E
120°
F
60°
G
H
1
2
3
4
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
5cm
55°
A
B
70°
C

5cm
55°
D
E
70°
F

9cm
75°
G
5cm
H
I

5cm
J
4cm
K
3cm
L

9cm
75°
M
5cm
N
O

5cm
P
4cm
Q
3cm
R

(1)



(2)



(3)



@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABC≡△DEF ならば ∠C=∠F である.
(2) △ABCと△DEFについて AB=DE,BC=EF,∠B=∠E ならば △ABC≡△DEF である.
(3) △ABC≡△DEF ならば AB=DE である.
(1) 仮定

結論

(2) 仮定

結論

(3) 仮定

結論

4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AB=CD,AD=CBならば,△ABC≡△CDAであることを証明しなさい.
A
B
C
D
△ABCと△CDAにおいて
仮定より,
    AB=CD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△CDA
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BCA=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

                    
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C1-90]
6
12点 部分点可
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=CO,BO=DOならば,∠B=∠Dであることを証明しなさい.
A
B
C
D
O

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,AC=AD,DB=CEならば,BC=DEであることを証明しなさい.
B
C
A
D
E

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
四角形ABCDと四角形EFGHは合同である.対応する角または辺について答えなさい.

1. ∠Bの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=6cmのとき,ABの大きさ

65°
A
B
C
115°
D
E
120°
F
60°
G
H
1 ∠B=120°   
2 ∠E=65°   
3 ∠C=60°   
4 AB=6cm
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
5cm
55°
A
B
70°
C

5cm
55°
D
E
70°
F

9cm
75°
G
5cm
H
I

5cm
J
4cm
K
3cm
L

9cm
75°
M
5cm
N
O

5cm
P
4cm
Q
3cm
R

(1)   △JKL≡△PQR
3組の辺がそれぞれ等しい
(2) △GHI≡△MNO
2組の辺とその間の角がそれぞれ等しい
(3) △ABC≡△DEF
1組の辺とその両端の角がそれぞれ等しい.
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABC≡△DEF ならば ∠C=∠F である.
(2) △ABCと△DEFについて AB=DE,BC=EF,∠B=∠E ならば △ABC≡△DEF である.
(3) △ABC≡△DEF ならば AB=DE である.
(1) 仮定  △ABC≡△DEF
結論  ∠C=∠F
(2) 仮定  AB=DE ,BC=EF ,∠B=∠E
結論  △ABC≡△DEF
(3) 仮定  △ABC≡△DEF
結論  AB=DE
4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AB=CD,AD=CBならば,△ABC≡△CDAであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    AB=CD    ---①
     AD = CB     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△CDA
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BCA=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
     CB = CD     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

     ∠BCA = ∠DCA 
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C1-90]
6
12点 部分点可
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    ∠BAC=∠DAC    ---①
    ∠BCA=∠DCA    ---②

また,ACは共通だから

    AC=AC    ---③

① ② ③ から,1組の辺とその両端の角がそれぞれ等しい ので

    △ABC≡△ADC
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=CO,BO=DOならば,∠B=∠Dであることを証明しなさい.
A
B
C
D
O

△ABOと△CDOにおいて
仮定より,
    AO=CO    ---①
    BO=DO    ---②

対頂角は等しいから

    ∠AOB=∠COD    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△CDO

合同な図形では 対応する角の大きさは等しいので

    ∠B=∠D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,AC=AD,DB=CEならば,BC=DEであることを証明しなさい.
B
C
A
D
E

△ABCと△AEDにおいて,
仮定より,

    AC=AD    ---①
    DB=CE    ---②

また,
    AB=AD+DB    ---③
    AE=AC+CE    ---④

① ② ③ ④ から,

    AB=AE    ---⑤

また, ∠A は共通    ---⑥

① ⑤ ⑥ から, 2組の辺とその間の角がそれぞれ等しい ので

    △ABC≡△AED

合同な図形では 対応する辺の大きさは等しいので

    BC=DE
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

△AFEと△BCEにおいて,
仮定より,

    AE=BE    ---①

対頂角は等しいので

    ∠AEF=∠BEC    ---②

また,仮定CB//DFより 錯角は等しいので

    ∠FAE=∠CBE    ---③

① ② ③ から, 1組の辺とその両端の角がそれぞれ等しい ので

    △AFE≡△BCE

合同な図形では 対応する辺の大きさは等しいので

    FE=CE
余白に記入
@2017    http://sugaku.club/