[文字サイズの変更]
 
数学クラブ
証明
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=8cmのとき,BCの大きさ

A
40°
B
C
85°
D
E
55°
F
1
2
3
4
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
8cm
A
7cm
B
7cm
C

5cm
D
3cm
E
F

8cm
G
7cm
H
7cm
I

7cm
70°
J
K
40°
L

5cm
M
3cm
N
O

7cm
70°
P
Q
40°
R

(1)



(2)



(3)



@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(3) ab ならば acbc である.
(1) 仮定

結論

(2) 仮定

結論

(3) 仮定

結論

4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    ∠BAC=∠DAC    ---①
                                ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BCA=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

                    
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AO=DO,BO=COならば,∠A=∠Dであることを証明しなさい.
A
B
C
D
O

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AB=CD,AD=CBならば,∠B=∠Dであることを証明しなさい.
A
B
C
D

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Eの大きさ


3. ∠Cの大きさ


4. EF=8cmのとき,BCの大きさ

A
40°
B
C
85°
D
E
55°
F
1 ∠A=85°   
2 ∠E=40°   
3 ∠C=55°   
4 BC=8cm
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
8cm
A
7cm
B
7cm
C

5cm
D
3cm
E
F

8cm
G
7cm
H
7cm
I

7cm
70°
J
K
40°
L

5cm
M
3cm
N
O

7cm
70°
P
Q
40°
R

(1)   △ABC≡△GHI
3組の辺がそれぞれ等しい
(2) △DEF≡△MNO
2組の辺とその間の角がそれぞれ等しい
(3) △JKL≡△PQR
1組の辺とその両端の角がそれぞれ等しい.
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(3) ab ならば acbc である.
(1) 仮定  AB=DE ,∠A=∠D ,∠B=∠E
結論  △ABC≡△DEF
(2) 仮定  AB=DE ,BC=EF ,AC=DF
結論  △ABC≡△DEF
(3) 仮定  ab
結論  acbc
4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    ∠BAC=∠DAC    ---①
     ∠BCA = ∠DCA     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 1組の辺とその両端の角がそれぞれ等しい ので

    △ABC≡△ADC
(1) 空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BCA=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
     CB = CD     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

     ∠BCA = ∠DCA 
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AO=DO,BO=COならば,∠A=∠Dであることを証明しなさい.
A
B
C
D
O

△ABOと△DCOにおいて
仮定より,
    AO=DO    ---①
    BO=CO    ---②

対頂角は等しいから

    ∠AOB=∠DOC    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△DCO

合同な図形では 対応する角の大きさは等しいので

    ∠A=∠D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AB=CD,AD=CBならば,∠B=∠Dであることを証明しなさい.
A
B
C
D

△ABCと△CDAにおいて
仮定より,
    AB=CD    ---①
    AD=CB    ---②

また,ACは共通だから

    AC=AC    ---③

① ② ③ から,3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

    ∠B=∠D
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

△AFEと△BCEにおいて,
仮定より,

    AE=BE    ---①

対頂角は等しいので

    ∠AEF=∠BEC    ---②

また,仮定CB//DFより 錯角は等しいので

    ∠FAE=∠CBE    ---③

① ② ③ から, 1組の辺とその両端の角がそれぞれ等しい ので

    △AFE≡△BCE

合同な図形では 対応する辺の大きさは等しいので

    FE=CE
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

△ABOと△DCOにおいて,三角形の内角の和は180°だから,

    ∠A+∠B+∠AOB=180°    ---①
    ∠C+∠D+∠DOC=180°    ---②

① ② から,

    ∠A+∠B+∠AOB=∠C+∠D+∠DOC    ---③

また,対頂角は等しいので

    ∠AOB=∠DOC    ---④

③ ④ から,

    ∠A+∠B=∠C+∠D
余白に記入
@2017    http://sugaku.club/