[文字サイズの変更]
 
数学クラブ
証明
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Fの大きさ


3. ∠Bの大きさ


4. EF=5cmのとき,BCの大きさ

A
B
40°
C
60°
D
80°
E
F
1
2
3
4
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
4cm
35°
A
B
65°
C

5cm
D
4cm
E
3cm
F

8cm
85°
G
6cm
H
I

5cm
J
4cm
K
3cm
L

4cm
35°
M
N
65°
O

8cm
85°
P
6cm
Q
R

(1)



(2)



(3)



@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(2) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(3) △ABCについて ∠A+∠B=90°ならば ∠C=90°である.
(1) 仮定

結論

(2) 仮定

結論

(3) 仮定

結論

4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    ∠BAC=∠DAC    ---①
                                ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC
(1) 空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BAC=∠DACであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

                    
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C1-90]
6
12点 部分点可
次の図で,AB=CD,AD=CBならば,△ABC≡△CDAであることを証明しなさい.
A
B
C
D
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=DO,BO=COならば,AB=DCであることを証明しなさい.
A
B
C
D
O

余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,AC=AD,DB=CEならば,BC=DEであることを証明しなさい.
B
C
A
D
E

余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Aの大きさ


2. ∠Fの大きさ


3. ∠Bの大きさ


4. EF=5cmのとき,BCの大きさ

A
B
40°
C
60°
D
80°
E
F
1 ∠A=60°   
2 ∠F=40°   
3 ∠B=80°   
4 BC=5cm
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
4cm
35°
A
B
65°
C

5cm
D
4cm
E
3cm
F

8cm
85°
G
6cm
H
I

5cm
J
4cm
K
3cm
L

4cm
35°
M
N
65°
O

8cm
85°
P
6cm
Q
R

(1)   △DEF≡△JKL
3組の辺がそれぞれ等しい
(2) △GHI≡△PQR
2組の辺とその間の角がそれぞれ等しい
(3) △ABC≡△MNO
1組の辺とその両端の角がそれぞれ等しい.
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(2) △ABCと△DEFについて AB=DE,BC=EF,AC=DF ならば △ABC≡△DEF である.
(3) △ABCについて ∠A+∠B=90°ならば ∠C=90°である.
(1) 仮定  AB=DE ,BC=EF ,AC=DF
結論  △ABC≡△DEF
(2) 仮定  AB=DE ,BC=EF ,AC=DF
結論  △ABC≡△DEF
(3) 仮定  ∠A+∠B=90°
結論  ∠C=90°
4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,∠BAC=∠DAC,∠BCA=∠DCAならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    ∠BAC=∠DAC    ---①
     ∠BCA = ∠DCA     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 1組の辺とその両端の角がそれぞれ等しい ので

    △ABC≡△ADC
(1) 空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AB=AD,CB=CDならば,∠BAC=∠DACであることを証明しなさい.
A
B
C
D

△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
     CB = CD     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

     ∠BAC = ∠DAC 
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C1-90]
6
12点 部分点可
次の図で,AB=CD,AD=CBならば,△ABC≡△CDAであることを証明しなさい.
A
B
C
D
△ABCと△CDAにおいて
仮定より,
    AB=CD    ---①
    AD=CB    ---②

また,ACは共通だから

    AC=AC    ---③

① ② ③ から,3組の辺がそれぞれ等しい ので

    △ABC≡△CDA
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AO=DO,BO=COならば,AB=DCであることを証明しなさい.
A
B
C
D
O

△ABOと△DCOにおいて
仮定より,
    AO=DO    ---①
    BO=CO    ---②

対頂角は等しいから

    ∠AOB=∠DOC    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△DCO

合同な図形では 対応する辺の大きさは等しいので

    AB=DC
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,AC=AD,DB=CEならば,BC=DEであることを証明しなさい.
B
C
A
D
E

△ABCと△AEDにおいて,
仮定より,

    AC=AD    ---①
    DB=CE    ---②

また,
    AB=AD+DB    ---③
    AE=AC+CE    ---④

① ② ③ ④ から,

    AB=AE    ---⑤

また, ∠A は共通    ---⑥

① ⑤ ⑥ から, 2組の辺とその間の角がそれぞれ等しい ので

    △ABC≡△AED

合同な図形では 対応する辺の大きさは等しいので

    BC=DE
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,CB//DF,AE=BEならば,FE=CEであることを証明しなさい.
A
B
C
D
E
F

△AFEと△BCEにおいて,
仮定より,

    AE=BE    ---①

対頂角は等しいので

    ∠AEF=∠BEC    ---②

また,仮定CB//DFより 錯角は等しいので

    ∠FAE=∠CBE    ---③

① ② ③ から, 1組の辺とその両端の角がそれぞれ等しい ので

    △AFE≡△BCE

合同な図形では 対応する辺の大きさは等しいので

    FE=CE
余白に記入
@2020    http://sugaku.club/