[文字サイズの変更]
 
数学クラブ
証明
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Cの大きさ


2. ∠Dの大きさ


3. ∠Bの大きさ


4. EF=9cmのとき,BCの大きさ

50°
A
B
C
D
E
40°
F
1
2
3
4
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
9cm
70°
A
8cm
B
C

9cm
70°
D
8cm
E
F

6cm
55°
G
H
40°
I

6cm
J
3cm
K
4cm
L

6cm
M
3cm
N
4cm
O

6cm
55°
P
Q
40°
R

(1)



(2)



(3)



@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) △ABC≡△DEF ならば AB=DE である.
(3) △ABCと△DEFについて AB=DE,BC=EF,∠B=∠E ならば △ABC≡△DEF である.
(1) 仮定

結論

(2) 仮定

結論

(3) 仮定

結論

4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AB=AD,CB=CDならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
                        ---②

また,      は共通だから

    AC=AC    ---③

① ② ③ から,                                                ので

    △ABC≡△ADC
(1) 空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AO=CO,BO=DOならば,∠B=∠Dであることを証明しなさい.
A
B
C
D
O

△ABOと△CDOにおいて
仮定より,
    AO=CO    ---①
                        ---②

            は等しいから

    ∠AOB=∠COD    ---③

① ② ③ から,                                                  ので

    △ABO≡△CDO

合同な図形では 対応する角の大きさは等しいので

                    
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AB=CD,AD=CBならば,∠BAC=∠DCAであることを証明しなさい.
A
B
C
D

余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AB//DC,AO=COならば,AB=DCであることを証明しなさい.
A
B
C
D
O

余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
証明
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,DB=AC,∠BDA=∠CADならば,AB=DCであることを証明しなさい.
A
B
C
D

余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/7 ページ
1
次の問に答えなさい.   [2A1-00]
1
2点×4
△ABCと△DEFは合同である.対応する角または辺について答えなさい.

1. ∠Cの大きさ


2. ∠Dの大きさ


3. ∠Bの大きさ


4. EF=9cmのとき,BCの大きさ

50°
A
B
C
D
E
40°
F
1 ∠C=40°   
2 ∠D=50°   
3 ∠B=90°   
4 BC=9cm
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2B1-00]
2
順不同 完答 5点×3
9cm
70°
A
8cm
B
C

9cm
70°
D
8cm
E
F

6cm
55°
G
H
40°
I

6cm
J
3cm
K
4cm
L

6cm
M
3cm
N
4cm
O

6cm
55°
P
Q
40°
R

(1)   △JKL≡△MNO
3組の辺がそれぞれ等しい
(2) △ABC≡△DEF
2組の辺とその間の角がそれぞれ等しい
(3) △GHI≡△PQR
1組の辺とその両端の角がそれぞれ等しい.
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/7 ページ
3
次のことがらについて,仮定と結論を答えなさい.   [2C0-00]
3
完答 2点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) △ABC≡△DEF ならば AB=DE である.
(3) △ABCと△DEFについて AB=DE,BC=EF,∠B=∠E ならば △ABC≡△DEF である.
(1) 仮定  AB=DE ,∠A=∠D ,∠B=∠E
結論  △ABC≡△DEF
(2) 仮定  △ABC≡△DEF
結論  AB=DE
(3) 仮定  AB=DE ,BC=EF ,∠B=∠E
結論  △ABC≡△DEF
4
次の問に答えなさい.   [2C1-91]
4
3点×3
次の図で,AB=AD,CB=CDならば,△ABC≡△ADCであることを証明しなさい.
A
B
C
D
△ABCと△ADCにおいて
仮定より,
    AB=AD    ---①
     CB = CD     ---②

また, AC は共通だから

    AC=AC    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABC≡△ADC
(1) 空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/7 ページ
5
次の問に答えなさい.   [2C2-91]
5
3点×4
次の図で,AO=CO,BO=DOならば,∠B=∠Dであることを証明しなさい.
A
B
C
D
O

△ABOと△CDOにおいて
仮定より,
    AO=CO    ---①
     BO = DO     ---②

 対頂角 は等しいから

    ∠AOB=∠COD    ---③

① ② ③ から, 2組の辺とその間の角がそれぞれ等しい ので

    △ABO≡△CDO

合同な図形では 対応する角の大きさは等しいので

     ∠B = ∠D 
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/7 ページ
6
次の問に答えなさい.   [2C2-90]
6
12点 部分点可
次の図で,AB=CD,AD=CBならば,∠BAC=∠DCAであることを証明しなさい.
A
B
C
D

△ABCと△CDAにおいて
仮定より,
    AB=CD    ---①
    AD=CB    ---②

また,ACは共通だから

    AC=AC    ---③

① ② ③ から,3組の辺がそれぞれ等しい ので

    △ABC≡△ADC

合同な図形では 対応する角の大きさは等しいので

    ∠BAC=∠DCA
余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/7 ページ
7
次の問に答えなさい.   [2C3-90]
7
12点 部分点可
次の図で,AB//DC,AO=COならば,AB=DCであることを証明しなさい.
A
B
C
D
O

△ABOと△CDOにおいて

仮定より,
    AO=CO    ---①

AB//DCより,錯角は等しいから

    ∠BAO=∠DCO    ---②

対頂角は等しいから

    ∠AOB=∠COD    ---③

① ② ③ から,1組の辺とその両端の角がそれぞれ等しい ので

    △ABO≡△CDO

合同な図形では 対応する辺の大きさは等しいので

    AB=DC
余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/7 ページ
8
次の問に答えなさい.   [2C3-90]
8
13点 部分点可
次の図で,∠A+∠B=∠C+∠D となることを証明しなさい.
A
B
C
D
O

△ABOと△DCOにおいて,三角形の内角の和は180°だから,

    ∠A+∠B+∠AOB=180°    ---①
    ∠C+∠D+∠DOC=180°    ---②

① ② から,

    ∠A+∠B+∠AOB=∠C+∠D+∠DOC    ---③

また,対頂角は等しいので

    ∠AOB=∠DOC    ---④

③ ④ から,

    ∠A+∠B=∠C+∠D
余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/7 ページ
9
次の問に答えなさい.   [2C3-90]
9
13点 部分点可
次の図で,DB=AC,∠BDA=∠CADならば,AB=DCであることを証明しなさい.
A
B
C
D

△ABDと△DCAにおいて,
仮定より,

    DB=AC    ---①
    ∠BDA=∠CAD    ---②

また,DA は共通    ---③

① ② ③ から,2組の辺とその間の角がそれぞれ等しい ので

    △ABD≡△DCA

合同な図形では 対応する辺の大きさは等しいので

    AB=DC
余白に記入
@2025    http://sugaku.club/