[文字サイズの変更]
 
数学クラブ
図形の性質と証明
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 直角三角形で,直角に対する辺を      といいます   [2i3-z0]
(2)          三角形は,2つの底角が等しい   [2i3-z0]
(3) 正三角形は,                                          と定義されます.   [2i3-z0]
(4)                   は,2つの辺が等しい三角形と定義されます.   [2i3-z0]
(5) 平行四辺形は         がそれぞれの中点で交わる   [2M4-z0]
(6) 平行四辺形は                        角がそれぞれ等しい   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
3cm
60°
A
B
C

5cm
D
E
10cm
F

6cm
35°
G
H
I

5cm
J
K
10cm
L

3cm
60°
M
N
O

6cm
35°
P
Q
R

(1)



(2)



(3)



@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) 整数abについて,abが偶数 ならば abは偶数 である.
(2) △ABC≡△DEF ならば ∠A=∠D,∠B=∠E,∠C=∠F である.
(3) xy ならば x−6<y−6 である.
(1) 逆:
(     )
反例:

(2) 逆:
(     )
反例:

(3) 逆:
(     )
反例:

4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AB=ADのとき,この四角形は         になります.   [2N0-z0]
(2) 正方形は,                                                                     四角形と定義されます.   [2N0-z0]
(3) ▱ABCDについて,∠A=∠D,AB=BCのとき,この四角形は         になります.   [2N0-z0]
(4) ひし形は,                                 四角形と定義されます.   [2N0-z0]
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i0-z0]
5
7点 部分点可
次の図で,AB=CBならば,∠A=∠Cであることを証明しなさい.
A
B
C
D


空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2i2-z0]
6
7点 部分点可
二等辺三角形ABCの底角∠B,∠Cの二等分線の交点をDとするとき,DB=DCであることを証明しなさい.


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K1-z1]
7
1点×4
次の図で,∠A=∠B=∠Cならば,AB=BC=CAであることを証明しなさい.
A
B
C

△ABCで,仮定より
    ∠A=∠C    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    AB=          ---②

また,仮定より
    ∠B=∠C    ---③

③から,△ABCはBCを底辺とする                  なので
    AB=          ---④

② ④ から,
    AB=BC=      
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図で,△ABCは正三角形です.辺AB,BC,CA上に,AD=BE=CFとなるような点D,E,Fをとります.このとき,△DEFが正三角形になることを証明しなさい.


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L3-z1]
9
1点×5
次の図で,∠ADB=∠CDB,∠A=∠C=90°ならば,△ABD≡△CBDであることを証明しなさい.
A
B
C
D

△ABDと△CBDで
仮定より,
    ∠ADB=          ---①
    ∠A=          ---②

また,BDは共通だから
    BD=          ---③

①②③ から,                                                ので

    △ABD≡        
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
正方形ABCDの辺BC,CD上に,AE=BFとなる点E,Fがあります.このとき,BE=CFであることを証明しなさい.


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M0-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,AB=CD,AD=BCを証明しなさい.
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
次の図で,△ABC≡△EDF,AC//EFならば,四角形BHDGは平行四辺形であることを証明しなさい.
A
B
C
D
E
F
G
H
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N2-z0]
13
7点 部分点可
ひし形ABCDについてAC⊥BDとなることを証明しなさい.


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,PQ//ABであるとき,△PAB=△QABとなることを証明しなさい.


PQ//ABなので
    PH=      

△PABと      

底辺      は共通で,高さが等しいから      は等しい.
よって
    △PAB=△QAB
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,AD//BCであるとき,△ABO=△DOCとなることを証明しなさい.


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDは平行四辺形です.EF//BDのとき,△BCFと面積が等しい三角形をすべて見つけなさい.




 
17
次の問に答えなさい.   [2P1-z0]
17
6点
四角形ABCDが折れ線EFGで2つの部分ア,イに分かれています.点Eを通りそれぞれの部分の面積を変えないような直線を三角定規を使って描きなさい.
A
B
C
D
E
F
G
(ア)
(イ)
図に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 直角三角形で,直角に対する辺を斜辺といいます   [2i3-z0]
(2) 二等辺三角形は,2つの底角が等しい   [2i3-z0]
(3) 正三角形は,3つの辺がすべて等しい三角形と定義されます.   [2i3-z0]
(4) 二等辺三角形は,2つの辺が等しい三角形と定義されます.   [2i3-z0]
(5) 平行四辺形は対角線がそれぞれの中点で交わる   [2M4-z0]
(6) 平行四辺形は2組の向かいあう角がそれぞれ等しい   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
3cm
60°
A
B
C

5cm
D
E
10cm
F

6cm
35°
G
H
I

5cm
J
K
10cm
L

3cm
60°
M
N
O

6cm
35°
P
Q
R

(1)   △ABC≡△MNO  1組の辺とその両端の角がそれぞれ等しい
(2) △DEF≡△JKL  直角三角形の斜辺と他の1辺がそれぞれ等しい
(3) △GHI≡△PQR  直角三角形の斜辺と1つの鋭角がそれぞれ等しい.
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) 整数abについて,abが偶数 ならば abは偶数 である.
(2) △ABC≡△DEF ならば ∠A=∠D,∠B=∠E,∠C=∠F である.
(3) xy ならば x−6<y−6 である.
(1)  逆:整数abについて,abが偶数 ならば abは偶数 である.  (×) 
反例:a=1,b=3の場合 
(2)  逆:∠A=∠D,∠B=∠E,∠C=∠F ならば △ABC≡△DEF である.  (×) 
反例:AB≠DEの場合 
(3)  逆:x−6<y−6 ならば xy である.  (○) 
反例: 
4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AB=ADのとき,この四角形はひし形になります.   [2N0-z0]
(2) 正方形は,4つの辺がすべて等しく,4つの角がすべて等しい四角形と定義されます.   [2N0-z0]
(3) ▱ABCDについて,∠A=∠D,AB=BCのとき,この四角形は正方形になります.   [2N0-z0]
(4) ひし形は,4つの辺がすべて等しい四角形と定義されます.   [2N0-z0]
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i0-z0]
5
7点 部分点可
次の図で,AB=CBならば,∠A=∠Cであることを証明しなさい.
A
B
C
D


ACの中点を点Dとおく
△ABDと△CBDで

点DはACの中点なので
    AD=CD    ---①

仮定より,
    AB=CB    ---②

また,BDは共通だから
    BD=BD    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABD≡△CBD

合同な図形では 対応する角の大きさは等しいので

    ∠A=∠C
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2i2-z0]
6
7点 部分点可
二等辺三角形ABCの底角∠B,∠Cの二等分線の交点をDとするとき,DB=DCであることを証明しなさい.


仮定より
     1     ---①
 ∠DBC=∠ABC
  2 
     1     ---②
 ∠DCB=∠ACB
  2 
二等辺三角形の2つの底角は等しいので
    ∠ABC=∠ACB    ---③

①②③より
    ∠DBC=∠DCB

2つの角が等しい三角形は二等辺三角形であるから
    DB=DC
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K1-z1]
7
1点×4
次の図で,∠A=∠B=∠Cならば,AB=BC=CAであることを証明しなさい.
A
B
C

△ABCで,仮定より
    ∠A=∠C    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    AB=  BC      ---②

また,仮定より
    ∠B=∠C    ---③

③から,△ABCはBCを底辺とする 二等辺三角形 なので
    AB=  CA      ---④

② ④ から,
    AB=BC=  CA  
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図で,△ABCは正三角形です.辺AB,BC,CA上に,AD=BE=CFとなるような点D,E,Fをとります.このとき,△DEFが正三角形になることを証明しなさい.


△ADFと△BEDと△CFEで
仮定より
    AB=BC=CA    ---①
    AD=BE=CF    ---②
    ∠FAD=∠DBE=∠ECF=60°    ---③

①②より
    AF=BD=CE    ---④

②③④より,2組の辺とその間の角がそれぞれ等しいので
    △ADF≡△BED≡△CFE

したがって,
    FD=DE=EF

3つの辺の長さが等しいので,△DEFは正三角形である.

余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L3-z1]
9
1点×5
次の図で,∠ADB=∠CDB,∠A=∠C=90°ならば,△ABD≡△CBDであることを証明しなさい.
A
B
C
D

△ABDと△CBDで
仮定より,
    ∠ADB=  ∠CDB      ---①
    ∠A=  ∠C      ---②

また,BDは共通だから
    BD= BD     ---③

①②③ から, 直角三角形の斜辺と1つの鋭角がそれぞれ等しい ので

    △ABD≡ △CBD 
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
正方形ABCDの辺BC,CD上に,AE=BFとなる点E,Fがあります.このとき,BE=CFであることを証明しなさい.


△ABEと△BCFで
仮定より
    AE=BF    ---①

四角形ABCDは正方形なので
    AB=BC    ---②
    ∠ABE=∠BCF=90°    ---③

①②③より,直角三角形の斜辺と他の1辺がそれぞれ等しいので
    △ABE≡△BCF

合同な図形では,対応する辺は等しいので
    BE=CF
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M0-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,AB=CD,AD=BCを証明しなさい.
A
B
C
D


△ABCと△CDAで
平行線の錯角は等しいので

AB//DCから
    ∠BAC=∠DCA    ---①

AD//BCから
    ∠DAC=∠BCA    ---②

また,ACは共通だから
    AC=CA    ---③

①②③ から,1組の辺とその両端の角がそれぞれ等しいので
    △ABC≡△CDA

合同な図形では 対応する辺の大きさは等しいので
    AB=CD,BC=DA
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
次の図で,△ABC≡△EDF,AC//EFならば,四角形BHDGは平行四辺形であることを証明しなさい.
A
B
C
D
E
F
G
H
AC//EFより,錯角は等しいので
    ∠A=∠FBG    ---①
    ∠F=∠GDA    ---②

△ABC≡△EDFより,合同な図形では 対応する角の大きさは等しいので
    ∠E=∠A    ---③
    ∠F=∠C    ---④

① ③ から,∠E=∠FBG    ---⑤
② ④ から,∠C=∠GDA    ---⑥

同位角の等しい2直線は 平行なので
    ⑤ から,DH//GB    ---⑦
    ⑥ から,BH//GD    ---⑧

⑦ ⑧ から,2組の向かい合う辺がそれぞれ平行なので,四角形BHDGは 平行四辺形である.
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N2-z0]
13
7点 部分点可
ひし形ABCDについてAC⊥BDとなることを証明しなさい.


△ABOと△ADOで,AOは共通だから
    AO=AO    ---①

ひし形ABCDは,4つの辺すべてが等しいから
    AB=AD    ---②

ひし形ABCDは,平行四辺形なので
    BO=DO    ---③

① ② ③ から,3組の辺がそれぞれ等しいので
    △ABO≡△ADO

合同な図形では 対応する角は等しいので
    ∠AOB=∠AOD=∠90°

よって,AC⊥BD
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,PQ//ABであるとき,△PAB=△QABとなることを証明しなさい.


PQ//ABなので
    PH= QK 

△PABと △QAB 

底辺 AB は共通で,高さが等しいから 面積 は等しい.
よって
    △PAB=△QAB
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,AD//BCであるとき,△ABO=△DOCとなることを証明しなさい.


△ABCは,△ABOと△OBCに分けられるので
    △ABC=△ABO+△OBC    ---①

△DBCは,△DOCと△OBCに分けられるので
    △DBC=△DOC+△OBC    ---②

AD//BCなので
    △ABC=△DBC    ---③

①②③より
    △ABO=△DOC
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDは平行四辺形です.EF//BDのとき,△BCFと面積が等しい三角形をすべて見つけなさい.
△BDF,△BDE,△CDE
17
次の問に答えなさい.   [2P1-z0]
17
6点
四角形ABCDが折れ線EFGで2つの部分ア,イに分かれています.点Eを通りそれぞれの部分の面積を変えないような直線を三角定規を使って描きなさい.
A
B
C
D
E
F
G
(ア)
(イ)
図に記入
@2020    http://sugaku.club/