[文字サイズの変更]
 
数学クラブ
図形の性質と証明
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 底角が60°の二等辺三角形は            です.   [2i3-z0]
(2) 正三角形は,                                          と定義されます.   [2i3-z0]
(3) AB=ACである二等辺三角形ABCで∠Aを      といいます   [2i3-z0]
(4) AB=ACである二等辺三角形ABCで底辺の両端の角∠Bと∠Cを      といいます   [2i3-z0]
(5) 平行四辺形は                        辺がそれぞれ等しい   [2M4-z0]
(6) 平行四辺形は                        辺が等しく平行である   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
6cm
A
5cm
B
C

3cm
50°
D
E
F

9cm
G
H
13cm
I

6cm
J
5cm
K
L

3cm
50°
M
N
O

9cm
P
Q
13cm
R

(1)



(2)



(3)



@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) 整数abについて,abが偶数 ならば abは偶数 である.
(3) △ABC≡△DEF ならば ∠C=∠F である.
(1) 逆:
(     )
反例:

(2) 逆:
(     )
反例:

(3) 逆:
(     )
反例:

4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AC⊥BDのとき,この四角形は         になります.   [2N0-z0]
(2) 平行四辺形の対角線の長さが等しく垂直に交わるとき,この四角形は         になります.   [2N0-z0]
(3) ▱ABCDについて,AC=BDのとき,この四角形は         になります.   [2N0-z0]
(4) ▱ABCDについて,AB=ADのとき,この四角形は         になります.   [2N0-z0]
空欄に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i1-z0]
5
7点 部分点可
次の図で,∠A=∠Cならば,BA=BCであることを証明しなさい.
A
B
C
D

空欄に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2i2-z0]
6
7点 部分点可
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K1-z1]
7
1点×4
次の図で,∠A=∠B=∠Cならば,AB=BC=CAであることを証明しなさい.
A
B
C

△ABCで,仮定より
    ∠A=∠C    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    AB=          ---②

また,仮定より
    ∠B=∠C    ---③

③から,△ABCはBCを底辺とする                  なので
    AB=          ---④

② ④ から,
    AB=BC=      
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図で,△ABCは正三角形です.辺AB,BC,CA上に,AD=BE=CFとなるような点D,E,Fをとります.このとき,△DEFが正三角形になることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L2-z1]
9
1点×5
次の図で,AB=BC,∠ADB=∠CDB=90°ならば,△ABD≡△CBDを証明しなさい.
A
B
C
D


△ABDと△CBDで
仮定より
    AB=          ---①
    ∠ADB=      =90°    ---②

また,BDは共通だから
    BD=          ---③

①②③ から,                                                ので

    △ABD≡        
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
正方形ABCDの辺BC,CD上に,AE=BFとなる点E,Fがあります.このとき,BE=CFであることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M1-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,∠BAD=∠DCB,∠B=∠Dを証明しなさい.
A
B
C
D

余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N2-z0]
13
7点 部分点可
ひし形ABCDについてAC⊥BDとなることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,△PAB=△QABであるとき,PQ//ABとなることを証明しなさい.


仮定より,
    △PAB=             

      を共通な底辺とみると,高さは等しいので
    PH=      

よって
                         
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,DE//BCであるとき,△ABE=△ACDとなることを証明しなさい.


余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDで,AD//BCのとき,面積が等しい三角形の組をすべて見つけなさい.




 
17
次の問に答えなさい.   [2P1-z0]
17
6点
四角形ABCDで,辺ABをAの方向に延長した直線上に点Eをとり,△BCEの面積が,四角形ABCDの面積と等しくなるように,点Eの位置を求めて△BCEを三角定規を使って描きなさい.
A
B
C
D
図に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 底角が60°の二等辺三角形は正三角形です.   [2i3-z0]
(2) 正三角形は,3つの辺がすべて等しい三角形と定義されます.   [2i3-z0]
(3) AB=ACである二等辺三角形ABCで∠Aを頂角といいます   [2i3-z0]
(4) AB=ACである二等辺三角形ABCで底辺の両端の角∠Bと∠Cを底角といいます   [2i3-z0]
(5) 平行四辺形は2組の向かいあう辺がそれぞれ等しい   [2M4-z0]
(6) 平行四辺形は1組の向かいあう辺が等しく平行である   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
6cm
A
5cm
B
C

3cm
50°
D
E
F

9cm
G
H
13cm
I

6cm
J
5cm
K
L

3cm
50°
M
N
O

9cm
P
Q
13cm
R

(1)   △ABC≡△JKL  2組の辺とその間の角がそれぞれ等しい
(2) △GHI≡△PQR  直角三角形の斜辺と他の1辺がそれぞれ等しい
(3) △DEF≡△MNO  直角三角形の斜辺と1つの鋭角がそれぞれ等しい.
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) △ABCと△DEFについて AB=DE,∠A=∠D,∠B=∠E ならば △ABC≡△DEF である.
(2) 整数abについて,abが偶数 ならば abは偶数 である.
(3) △ABC≡△DEF ならば ∠C=∠F である.
(1)  逆:△ABCと△DEFについて △ABC≡△DEF ならば AB=DE,∠A=∠D,∠B=∠E である.  (○) 
反例: 
(2)  逆:整数abについて,abが偶数 ならば abは偶数 である.  (×) 
反例:a=1,b=3の場合 
(3)  逆:∠C=∠F ならば △ABC≡△DEF である.  (×) 
反例:AB≠DEの場合 
4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AC⊥BDのとき,この四角形はひし形になります.   [2N0-z0]
(2) 平行四辺形の対角線の長さが等しく垂直に交わるとき,この四角形は正方形になります.   [2N0-z0]
(3) ▱ABCDについて,AC=BDのとき,この四角形は長方形になります.   [2N0-z0]
(4) ▱ABCDについて,AB=ADのとき,この四角形はひし形になります.   [2N0-z0]
空欄に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i1-z0]
5
7点 部分点可
次の図で,∠A=∠Cならば,BA=BCであることを証明しなさい.
A
B
C
D

∠Bの二等分線をひきACとの交点を点Dとおく
△ABDと△CBDで
仮定より,
    ∠A=∠C    ---①

BDは∠Bの二等分線だから
    ∠ABD=∠CBD    ---②

三角形の内角の和は180°なので
    ∠A+∠ABD+∠BDA=180°    ---③
    ∠C+∠CBD+∠BDC=180°    ---④

① ② ③ ④ から,
    ∠BDA=∠BDC    ---⑤

また,BDは共通だから
    BD=BD    ---⑥

② ⑤ ⑥ から, 1組の辺とその両端の角がそれぞれ等しい ので
    △ABD≡△CBD

合同な図形では 対応する辺の大きさは等しいので
    BA=BC
空欄に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2i2-z0]
6
7点 部分点可
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


△DBCと△ECBで
仮定より
    BD=CE    ---①
    DC=EB    ---②

BCは共通なので
    BC=CB    ---③

①②③より,3組の辺がそれぞれ等しいので
    △DBC≡△ECB

合同な図形では,対応する角は等しいので
    ∠DBC=∠ECB

したがって,△ABCは二等辺三角形である.
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K1-z1]
7
1点×4
次の図で,∠A=∠B=∠Cならば,AB=BC=CAであることを証明しなさい.
A
B
C

△ABCで,仮定より
    ∠A=∠C    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    AB=  BC      ---②

また,仮定より
    ∠B=∠C    ---③

③から,△ABCはBCを底辺とする 二等辺三角形 なので
    AB=  CA      ---④

② ④ から,
    AB=BC=  CA  
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図で,△ABCは正三角形です.辺AB,BC,CA上に,AD=BE=CFとなるような点D,E,Fをとります.このとき,△DEFが正三角形になることを証明しなさい.


△ADFと△BEDと△CFEで
仮定より
    AB=BC=CA    ---①
    AD=BE=CF    ---②
    ∠FAD=∠DBE=∠ECF=60°    ---③

①②より
    AF=BD=CE    ---④

②③④より,2組の辺とその間の角がそれぞれ等しいので
    △ADF≡△BED≡△CFE

したがって,
    FD=DE=EF

3つの辺の長さが等しいので,△DEFは正三角形である.

余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L2-z1]
9
1点×5
次の図で,AB=BC,∠ADB=∠CDB=90°ならば,△ABD≡△CBDを証明しなさい.
A
B
C
D


△ABDと△CBDで
仮定より
    AB=  CB      ---①
    ∠ADB=  ∠CDB  =90°    ---②

また,BDは共通だから
    BD= BD     ---③

①②③ から, 直角三角形の斜辺と他の一辺がそれぞれ等しい ので

    △ABD≡ △CBD 
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
正方形ABCDの辺BC,CD上に,AE=BFとなる点E,Fがあります.このとき,BE=CFであることを証明しなさい.


△ABEと△BCFで
仮定より
    AE=BF    ---①

四角形ABCDは正方形なので
    AB=BC    ---②
    ∠ABE=∠BCF=90°    ---③

①②③より,直角三角形の斜辺と他の1辺がそれぞれ等しいので
    △ABE≡△BCF

合同な図形では,対応する辺は等しいので
    BE=CF
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M1-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,∠BAD=∠DCB,∠B=∠Dを証明しなさい.
A
B
C
D

△ABCと△CDAで
平行線の錯角は等しいので
    AB//DCから∠BAC=∠DCA    ---①
    AD//BCから∠DAC=∠BCA    ---②

また,ACは共通だから
    AC=CA    ---③

①②③ から,1組の辺とその両端の角がそれぞれ等しいので
    △ABC≡△CDA
合同な図形では 対応する角の大きさは等しいので
    ∠B=∠D

また,
    ∠BAD=∠BAC+∠DAC    ---④
    ∠DCB=∠DCA+∠BCA    ---⑤

① ② ④ ⑤ から,∠BAD=∠DCB
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


△BOFと△DOEで
平行四辺形の特徴より
    BO=DO    ---①
    AD//BC    ---②

② から,平行線の錯角は等しいので
    ∠OBF=∠ODE    ---③

また,対頂角は等しいので
    ∠BOF=∠DOE    ---④

① ③ ④ から,
1組の辺とその両端の角がそれぞれ等しいので
    △BOF≡△DOE

合同な図形では 対応する辺は等しいので
    OF=OE
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N2-z0]
13
7点 部分点可
ひし形ABCDについてAC⊥BDとなることを証明しなさい.


△ABOと△ADOで,AOは共通だから
    AO=AO    ---①

ひし形ABCDは,4つの辺すべてが等しいから
    AB=AD    ---②

ひし形ABCDは,平行四辺形なので
    BO=DO    ---③

① ② ③ から,3組の辺がそれぞれ等しいので
    △ABO≡△ADO

合同な図形では 対応する角は等しいので
    ∠AOB=∠AOD=∠90°

よって,AC⊥BD
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,△PAB=△QABであるとき,PQ//ABとなることを証明しなさい.


仮定より,
    △PAB= △QAB 

 AB を共通な底辺とみると,高さは等しいので
    PH= QK 

よって
     AB//PQ 
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,DE//BCであるとき,△ABE=△ACDとなることを証明しなさい.


△ABEは,△ADEと△DBEに分けられるので
    △ABE=△ADE+△DBE    ---①

△ADCは,△ADEと△DCEに分けられるので
    △ADC=△ADE+△DCE    ---②

DE//BCなので
    △DEB=△DCE    ---③

①②③より
    △ABE=△ADC
余白に記入
@2018    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDで,AD//BCのとき,面積が等しい三角形の組をすべて見つけなさい.
△ABCと△DBC,△ABDと△ACD,△OABと△ODC
17
次の問に答えなさい.   [2P1-z0]
17
6点
四角形ABCDで,辺ABをAの方向に延長した直線上に点Eをとり,△BCEの面積が,四角形ABCDの面積と等しくなるように,点Eの位置を求めて△BCEを三角定規を使って描きなさい.
A
B
C
D
E
図に記入
@2018    http://sugaku.club/