[文字サイズの変更]
 
数学クラブ
図形の性質と証明
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 底角が60°の二等辺三角形は            です.   [2i3-z0]
(2) 頂角が60°の二等辺三角形は            です.   [2i3-z0]
(3) 正三角形は,                                          と定義されます.   [2i3-z0]
(4) AB=ACである二等辺三角形ABCで底辺の両端の角∠Bと∠Cを      といいます   [2i3-z0]
(5) 平行四辺形は         がそれぞれの中点で交わる   [2M4-z0]
(6) 平行四辺形は                        辺がそれぞれ等しい   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
8cm
A
B
13cm
C

4cm
35°
D
E
F

8cm
G
H
13cm
I

6cm
60°
J
K
L

6cm
60°
M
N
O

4cm
35°
P
Q
R

(1)



(2)



(3)



@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) ab ならば acbc である.
(2) △ABC≡△DEF ならば ∠C=∠F である.
(3) xが4の約数ならば,xは12の約数である.
(1) 逆:
(     )
反例:

(2) 逆:
(     )
反例:

(3) 逆:
(     )
反例:

4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AC=BDのとき,この四角形は         になります.   [2N0-z0]
(2)          は,4つの辺がすべて等しい四角形と定義されます.   [2N0-z0]
(3) ▱ABCDについて,∠A=∠D,AB=BCのとき,この四角形は         になります.   [2N0-z0]
(4) ▱ABCDについて,AC⊥BDのとき,この四角形は         になります.   [2N0-z0]
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i0-z0]
5
7点 部分点可
次の図で,AB=CBならば,∠A=∠Cであることを証明しなさい.
A
B
C
D


空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2C-90]
6
7点 部分点可
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K0-z1]
7
1点×4
次の図で,AB=BC=CAならば,∠A=∠B=∠Cであることを証明しなさい.
A
B
C


△ABCで,仮定より
    AB=BC    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    ∠A=          ---②

また,仮定より
    AB=CA    ---③

③から,△ABCはBCを底辺とする                  なので
    ∠B=          ---④

② ④ から,
    ∠A=∠B=      
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図のように線分BD上に2つの正三角形ABCとECDがあります.点A,点Dおよび点B,点Eをそれぞれ結んだとき,△ACD≡△BCEになることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L3-z1]
9
1点×5
次の図で,∠ADB=∠CDB,∠A=∠C=90°ならば,△ABD≡△CBDであることを証明しなさい.
A
B
C
D

△ABDと△CBDで
仮定より,
    ∠ADB=          ---①
    ∠A=          ---②

また,BDは共通だから
    BD=          ---③

①②③ から,                                                ので

    △ABD≡        
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
AB=ACの二等辺三角形ABCがあります.B,Cから,それぞれAC,ABに垂線BE,CDをひくとき,△DBC≡△ECBであることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M0-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,AB=CD,AD=BCを証明しなさい.
A
B
C
D


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N1-z0]
13
7点 部分点可
次の▱ABCDについて,AC=BDであるとき▱ABCDが長方形となることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,△PAB=△QABであるとき,PQ//ABとなることを証明しなさい.


仮定より,
    △PAB=             

      を共通な底辺とみると,高さは等しいので
    PH=      

よって
                         
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,AD//BCであるとき,△ABO=△DOCとなることを証明しなさい.


余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
図形の性質と証明
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDは平行四辺形です.EF//BDのとき,△ABEと面積が等しい三角形をすべて見つけなさい.




 
17
次の問に答えなさい.   [2P1-z0]
17
6点
次の五角形ABCDEと面積が等しい△DFGを三角定規を使って描きなさい.ただし,F,G は辺ABの延長上にあるものとします.
A
B
C
D
E
図に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 60分        1/14 ページ
1
次の空欄に適する語を書きなさい.
1
1点×6
(1) 底角が60°の二等辺三角形は正三角形です.   [2i3-z0]
(2) 頂角が60°の二等辺三角形は正三角形です.   [2i3-z0]
(3) 正三角形は,3つの辺がすべて等しい三角形と定義されます.   [2i3-z0]
(4) AB=ACである二等辺三角形ABCで底辺の両端の角∠Bと∠Cを底角といいます   [2i3-z0]
(5) 平行四辺形は対角線がそれぞれの中点で交わる   [2M4-z0]
(6) 平行四辺形は2組の向かいあう辺がそれぞれ等しい   [2M4-z0]
空欄に記入
2
下図の三角形の中から合同な三角形の組を選び,記号≡を使って表しなさい.また,合同条件を書きなさい.   [2L5-00]
2
順不同 完答 2点×3
8cm
A
B
13cm
C

4cm
35°
D
E
F

8cm
G
H
13cm
I

6cm
60°
J
K
L

6cm
60°
M
N
O

4cm
35°
P
Q
R

(1)   △DEF≡△PQR  1組の辺とその両端の角がそれぞれ等しい
(2) △ABC≡△GHI  直角三角形の斜辺と他の1辺がそれぞれ等しい
(3) △JKL≡△MNO  直角三角形の斜辺と1つの鋭角がそれぞれ等しい.
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/14 ページ
3
次のことがらについて,逆を答えなさい.また,それが正しい場合には○,間違っている場合には×を(    )に書きなさい.逆が間違っている場合に反例を書きなさい.   [2J0-z3]
3
完答 1点×3
(1) ab ならば acbc である.
(2) △ABC≡△DEF ならば ∠C=∠F である.
(3) xが4の約数ならば,xは12の約数である.
(1)  逆:acbc ならば ab である.  (○) 
反例: 
(2)  逆:∠C=∠F ならば △ABC≡△DEF である.  (×) 
反例:AB≠DEの場合 
(3)  逆:xが12の約数ならば,xは4の約数である.  (×) 
反例:x=3の場合 
4
次の空欄に適する語を書きなさい.
4
1点×4
(1) ▱ABCDについて,AC=BDのとき,この四角形は長方形になります.   [2N0-z0]
(2) ひし形は,4つの辺がすべて等しい四角形と定義されます.   [2N0-z0]
(3) ▱ABCDについて,∠A=∠D,AB=BCのとき,この四角形は正方形になります.   [2N0-z0]
(4) ▱ABCDについて,AC⊥BDのとき,この四角形はひし形になります.   [2N0-z0]
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/14 ページ
5
次の問に答えなさい.   [2i0-z0]
5
7点 部分点可
次の図で,AB=CBならば,∠A=∠Cであることを証明しなさい.
A
B
C
D


ACの中点を点Dとおく
△ABDと△CBDで

点DはACの中点なので
    AD=CD    ---①

仮定より,
    AB=CB    ---②

また,BDは共通だから
    BD=BD    ---③

① ② ③ から, 3組の辺がそれぞれ等しい ので

    △ABD≡△CBD

合同な図形では 対応する角の大きさは等しいので

    ∠A=∠C
空欄に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/14 ページ
6
次の問に答えなさい.   [2C-90]
6
7点 部分点可
△ABCの辺AB,AC上にそれぞれ点D,Eがあり,BD=CEとする.このとき,DC=EBならば,△ABCは二等辺三角形になることを証明しなさい.


△DBCと△ECBで
仮定より
    BD=CE    ---①
    DC=EB    ---②

BCは共通なので
    BC=CB    ---③

①②③より,3組の辺がそれぞれ等しいので
    △DBC≡△ECB

合同な図形では,対応する角は等しいので
    ∠DBC=∠ECB

したがって,△ABCは二等辺三角形である.
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/14 ページ
7
次の問に答えなさい.   [2K0-z1]
7
1点×4
次の図で,AB=BC=CAならば,∠A=∠B=∠Cであることを証明しなさい.
A
B
C


△ABCで,仮定より
    AB=BC    ---①

①から,△ABCはCAを底辺とする二等辺三角形なので
    ∠A=  ∠C      ---②

また,仮定より
    AB=CA    ---③

③から,△ABCはBCを底辺とする 二等辺三角形 なので
    ∠B=  ∠C      ---④

② ④ から,
    ∠A=∠B=  ∠C  
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/14 ページ
8
次の問に答えなさい.   [2K2-z0]
8
7点 部分点可
次の図のように線分BD上に2つの正三角形ABCとECDがあります.点A,点Dおよび点B,点Eをそれぞれ結んだとき,△ACD≡△BCEになることを証明しなさい.


△ACDと△BCEで
仮定より,△ABC,△ECDは正三角形だから,

    AC=BC    ---①
    CD=CE    ---②
    ∠ECD=∠ACB=60°    ---③

また,

    ∠ACD=∠ECD+∠ACE    ---④
    ∠BCE=∠ACB+∠ACE    ---⑤

③④⑤より

    ∠ACD=∠BCE    ---⑥

①②⑥より,2組の辺とその間の角がそれぞれ等しいので

    △ACD≡△BCE
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/14 ページ
9
次の問に答えなさい.   [2L3-z1]
9
1点×5
次の図で,∠ADB=∠CDB,∠A=∠C=90°ならば,△ABD≡△CBDであることを証明しなさい.
A
B
C
D

△ABDと△CBDで
仮定より,
    ∠ADB=  ∠CDB      ---①
    ∠A=  ∠C      ---②

また,BDは共通だから
    BD= BD     ---③

①②③ から, 直角三角形の斜辺と1つの鋭角がそれぞれ等しい ので

    △ABD≡ △CBD 
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/14 ページ
10
次の問に答えなさい.   [2L4-z0]
10
7点 部分点可
AB=ACの二等辺三角形ABCがあります.B,Cから,それぞれAC,ABに垂線BE,CDをひくとき,△DBC≡△ECBであることを証明しなさい.


△DBCと△ECBで
仮定より
    ∠BDC=∠CEB=90°    ---①

△ABCは二等辺三角形なので
    ∠DBC=∠ECB    ---②

BCは共通なので
    BC=CB    ---③

①②③より,直角三角形の斜辺と1つの鋭角がそれぞれ等しいので
    △DBC≡△ECB
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/14 ページ
11
次の問に答えなさい.   [2M0-z0]
11
7点 部分点可
次の図で,AB//DC,AD//BCならば,AB=CD,AD=BCを証明しなさい.
A
B
C
D


△ABCと△CDAで
平行線の錯角は等しいので

AB//DCから
    ∠BAC=∠DCA    ---①

AD//BCから
    ∠DAC=∠BCA    ---②

また,ACは共通だから
    AC=CA    ---③

①②③ から,1組の辺とその両端の角がそれぞれ等しいので
    △ABC≡△CDA

合同な図形では 対応する辺の大きさは等しいので
    AB=CD,BC=DA
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/14 ページ
12
次の問に答えなさい.   [2M3-z0]
12
7点 部分点可
▱ABCDで,対角線の交点Oを通る直線を図のように描き,AD,BCとの交点を,それぞれ,E,Fとします.このとき,OE=OFとなることを証明しなさい.


△BOFと△DOEで
平行四辺形の特徴より
    BO=DO    ---①
    AD//BC    ---②

② から,平行線の錯角は等しいので
    ∠OBF=∠ODE    ---③

また,対頂角は等しいので
    ∠BOF=∠DOE    ---④

① ③ ④ から,
1組の辺とその両端の角がそれぞれ等しいので
    △BOF≡△DOE

合同な図形では 対応する辺は等しいので
    OF=OE
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/14 ページ
13
次の問に答えなさい.   [2N1-z0]
13
7点 部分点可
次の▱ABCDについて,AC=BDであるとき▱ABCDが長方形となることを証明しなさい.


△ABCと△DCBで
仮定より,
    AC=DB    ---①

BCは,共通だから
    BC=CB    ---②

平行四辺形の向かい合う辺は等しいので
    AB=DC    ---③

① ② ③ から,3組の辺がそれぞれ等しいので
    △ABC≡△DCB

合同な図形では 対応する角の大きさは等しいので
    ∠ABC=∠DCB    ---④

平行四辺形の向かい合う角は等しいから,④より,4つの角はすべて等しくなる.したがって,四角形ABCDは長方形である.
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        12/14 ページ
14
次の問に答えなさい.   [2P0-z1]
14
1点×4
次の図で,△PAB=△QABであるとき,PQ//ABとなることを証明しなさい.


仮定より,
    △PAB= △QAB 

 AB を共通な底辺とみると,高さは等しいので
    PH= QK 

よって
     AB//PQ 
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        13/14 ページ
15
次の問に答えなさい.   [2P3-z0]
15
7点 部分点可
次の図で,AD//BCであるとき,△ABO=△DOCとなることを証明しなさい.


△ABCは,△ABOと△OBCに分けられるので
    △ABC=△ABO+△OBC    ---①

△DBCは,△DOCと△OBCに分けられるので
    △DBC=△DOC+△OBC    ---②

AD//BCなので
    △ABC=△DBC    ---③

①②③より
    △ABO=△DOC
余白に記入
@2017    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        14/14 ページ
16
次の問に答えなさい.   [2P2-z0]
16
完答 6点
四角形ABCDは平行四辺形です.EF//BDのとき,△ABEと面積が等しい三角形をすべて見つけなさい.
△DBE,△DBF,△DAF
17
次の問に答えなさい.   [2P1-z0]
17
6点
次の五角形ABCDEと面積が等しい△DFGを三角定規を使って描きなさい.ただし,F,G は辺ABの延長上にあるものとします.
A
B
C
D
E
G
F
図に記入
@2017    http://sugaku.club/