[文字サイズの変更]
 
数学クラブ
円の性質
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
50°
x
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
100°
(1)
(2)
(3)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [331-01]
2
2点×5
次の図の円Oで,直径ABと,ABを除く円周上に点Pがあるとき,∠APB=90°であることを証明しなさい.
O
P
A
B


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠BOP=              ---①
    △OPBで,  ∠AOP=              ---②

∠BOP+∠AOP=180°なので,
① ② から,                    =180°

また,∠APB=∠x+∠yだから,

    ∠APB=        
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 2 
 
  3 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
Q
C
D
x
29°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
39°
y
48°
(1)
(2)
(3) x

y
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
36°
67°
50°
27°
(イ)
D
C
A
B
38°
88°
32°
19°
(ウ)
D
C
A
B
(エ)
D
C
A
B
38°
50°
33°
44°
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=30°となる点Pを作図しなさい.   [360-00]
A
B
C
(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
125°
x
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
x
63°
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
x
61°
(1)
(2)
(3)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
126°
x
y
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
32°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
40°
y
51°
48°
48°
(1) x

y
(2) x

y
(3) x

y
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
41°
15°
x
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
61°
x
(1)
(2)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります.AD//BCならば, AB = CD であることを証明しなさい.
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. AB = CD ならば,AD//BCであることを証明しなさい.
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
50°
x
 ∠x
 
 =2∠APB
 
 ∠x
 
 =2×50=100
 
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
100°
 ∠x
 
 1 
 =∠AOB
  2 
 ∠x
 
 1 
 =×100=50
  2 
(1) 100°
(2) 90°
(3) 50°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [331-01]
2
2点×5
次の図の円Oで,直径ABと,ABを除く円周上に点Pがあるとき,∠APB=90°であることを証明しなさい.
O
P
A
B
x
y
x
y
2x
2y


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠BOP= 2∠x     ---①
    △OPBで,  ∠AOP= 2∠y     ---②

∠BOP+∠AOP=180°なので,
① ② から, 2∠x  2∠y =180°

また,∠APB=∠x+∠yだから,

    ∠APB= 90° 
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 2 
 
  3 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
O
x
y
中心角 2 °
 ∠y=×360=240
  3 
円周角 1 °
 ∠x=∠y=120
  2 
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
Q
C
D
x
29°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
39°
y
48°
(1) 120°
(2) 29°
(3) x=39°
y=48°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
36°
67°
50°
27°
27°
(イ)
D
C
A
B
38°
88°
32°
19°
22°
(ウ)
D
C
A
B
(エ)
D
C
A
B
38°
50°
33°
44°
(ア) (ウ)
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=30°となる点Pを作図しなさい.   [360-00]
A
B
C
P
O
l



1. 点Cを通る線分ABの垂線lをひく

2. △ABOが正三角形になるような点Oを,直線ABについて点Cと反対側にかく

3. 点Oを中心に,AOを半径とする円Oをかく

直線lと円Oの交点のうち,直線ABについて点Oと同じ側にある点が,求める点Pである.


(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
125°
x
 中心角=2∠APB=2×125=250
 
 ∠x=360250=110
 
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
x
63°
∠APB=90°だから
 ∠APO=∠APB∠BPO=9063=27
 
△AOPは二等辺三角形なので
 ∠x=∠APO=27
 
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
x
61°
∠APB=90°なので
 ∠QPB=∠APB∠APQ=9061=29
 
 QB に対する円周角は等しいから
 ∠x=∠QAB=∠QPB=29
 
(1) 110°
(2) 27°
(3) 29°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
126°
x
y
 中心角=2∠APB=2×126=252
 
 ∠x=360252=108
 
 1 
 ∠y=∠x=54
  2 
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
32°
 ∠y=2∠CQD=2×32=64
 
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
40°
y
51°
48°
48°
∠ABD=∠ACDから,円周角の定理の逆より4点A,B,C,Dは同じ円周上にある.
AB に対する 円周角は等しいから,∠ADB=∠ACB
(1) x=108°
y=54°
(2) x=32°
y=64°
(3) x=40°
y=51°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
41°
15°
x
同じ弧に対する円周角の大きさは等しいので,
    ∠AFB=∠AEB
    ∠BDC=∠BEC
よって
 ∠x=4115=26
 
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
61°
x

    °
 ∠AOB=2∠ACB=2×61=122
 
PA,PBは,円Oの接線だから,PA⊥OA,PB⊥OB.
したがって,四角形APBOの内角の和は,
    
 ∠x∠AOB2×90
 
 =360
 
 ∠x
 
 =360(1222×90)
 
 ∠x
 
 =58
 
(1) 26°
(2)
°
 58
 
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります.AD//BCならば, AB = CD であることを証明しなさい.
A
B
C
D


仮定AD//BCより,平行線の錯角は等しいから,
    ∠ACB=∠CAD    ---①

 AB に対する円周角∠ACBと, CD に対する円周角∠CADについて

①より,等しい円周角に対する弧の長さは等しいから,
     AB = CD

余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. AB = CD ならば,AD//BCであることを証明しなさい.
A
B
C
D


仮定より,
     AB = CD     ---①

 AB に対する円周角∠ACBと, CD に対する円周角∠CADについて,
等しい弧に対する円周角は等しいから,①より
    ∠ACB=∠CAD    ---②

②より,平行線の錯角は等しいから,
    AD//BC
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


△ABDと△AECで,
仮定より, BD = CD 
等しい弧に対する円周角は等しいから,
    ∠BAD=∠EAC    ---①

また, AB に対する円周角は等しいから,
      ∠ADB=∠ACE    ---②

① ② から,2組の角が,それぞれ等しいので,
    △ABD∽△AEC
余白に記入
@2020    http://sugaku.club/