[文字サイズの変更]
 
数学クラブ
円の性質
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
53°
x
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
70°
(1)
(2)
(3)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [332-01]
2
2点×5
次の図の円Oで, AB を除く円周上に点Pがあるとき,∠AOB=2∠APBであることを証明しなさい.なお,PKは円Oの直径.
O
P
A
B
K


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠AOK=              ---①
    △OPBで,  ∠BOK=              ---②

∠AOB=∠AOKー∠BOKなので,
① ② から,∠AOB=                    

また,∠APB=∠xー∠yだから,

    ∠AOB=      ∠APB
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 1 
 
  4 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
C
x
23°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
41°
y
34°
(1)
(2)
(3) x

y
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
34°
52°
65°
34°
(イ)
D
C
A
B
40°
57°
22°
61°
(ウ)
D
C
A
B
42°
60°
37°
41°
(エ)
D
C
A
B
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=45°となる点Pを作図しなさい.   [360-00]
A
B
C
(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
119°
x
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
53°
x
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
28°
x
(1)
(2)
(3)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
134°
x
y
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
29°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
42°
y
56°
44°
38°
(1) x

y
(2) x

y
(3) x

y
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
51°
x
26°
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
x
44°
(1)
(2)
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,2つの弦ABとCDが,円内の点Pで交わっているとき,△PAC∽△PDBであることを証明しなさい.
P
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. AB = CD ならば,AD//BCであることを証明しなさい.
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
53°
x
 ∠x
 
 =2∠APB
 
 ∠x
 
 =2×53=106
 
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
70°
 ∠x
 
 1 
 =∠AOB
  2 
 ∠x
 
 1 
 =×70=35
  2 
(1) 106°
(2) 90°
(3) 35°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [332-01]
2
2点×5
次の図の円Oで, AB を除く円周上に点Pがあるとき,∠AOB=2∠APBであることを証明しなさい.なお,PKは円Oの直径.
O
P
A
B
K
x
y
x
y


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠AOK= 2∠x     ---①
    △OPBで,  ∠BOK= 2∠y     ---②

∠AOB=∠AOKー∠BOKなので,
① ② から,∠AOB= 2∠x  2∠y 

また,∠APB=∠xー∠yだから,

    ∠AOB= 2 ∠APB
空欄に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 1 
 
  4 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
O
x
y
中心角 1 °
 ∠y=×360=90
  4 
円周角 1 °
 ∠x=∠y=45
  2 
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
C
x
23°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
41°
y
34°
(1) 45°
(2) 23°
(3) x=41°
y=34°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
34°
52°
65°
34°
60°
(イ)
D
C
A
B
40°
57°
22°
61°
61°
(ウ)
D
C
A
B
42°
60°
37°
41°
41°
(エ)
D
C
A
B
(イ) (ウ) (エ)
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=45°となる点Pを作図しなさい.   [360-00]
A
B
C
P
O
D
l



1. 点Cを通る線分ABの垂線lをひく

2. ∠BAD=90°である直角二等辺三角形ABDをかく

3. BDの中点Oをとり,DOを半径とする円Oをかく

直線lと円Oの交点のうち,直線ABについて点Dと同じ側にある点が,求める点Pである.


(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
119°
x
 中心角=2∠APB=2×119=238
 
 ∠x=360238=122
 
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
53°
x
△AOPは二等辺三角形なので
 ∠APO=∠PAO=53
 
∠APB=90°だから
 ∠x=∠APB∠APO=9053=37
 
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
28°
x
 QB に対する円周角は等しいから
 ∠QAB=∠QPB=28
 
∠APB=90°なので
 ∠x=∠APB∠QPB=9028=62
 
(1) 122°
(2) 37°
(3) 62°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
134°
x
y
 中心角=2∠APB=2×134=268
 
 ∠x=360268=92
 
 1 
 ∠y=∠x=46
  2 
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
29°
 ∠y=2∠CQD=2×29=58
 
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
42°
y
56°
44°
38°
△ABDで,内角の和が180°であることから,∠DBA=44°.  ∠ABD=∠ACDから,円周角の定理の逆より4点A,B,C,Dは同じ円周上にある.
(1) x=92°
y=46°
(2) x=29°
y=58°
(3) x=42°
y=56°
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
51°
x
26°
同じ弧に対する円周角の大きさは等しいので,
    ∠AFB=∠AEB
    ∠BDC=∠BEC
よって
 ∠x=5126=25
 
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
x
44°


PA,PBは,円Oの接線だから,PA⊥OA,PB⊥OB.
したがって,四角形APBOの内角の和は,
    
 ∠AOB∠APB2×90
 
 =360
 
 ∠AOB
 
 =360(442×90)
 
 ∠AOB
 
 =136
 
∠ACBは,弧ABに対する円周角だから
    
 ∠ACB
 
 1 
 =∠AOB
  2 
 
 
 1 
 =×136
  2 
 ∠ACB
 
 =68
 
(1) 25°
(2)
°
 68
 
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,2つの弦ABとCDが,円内の点Pで交わっているとき,△PAC∽△PDBであることを証明しなさい.
P
A
B
C
D


△PACと△PDBで,
 CB に対する円周角は等しいから,
      ∠CAP=∠BDP    ---①
 AD に対する円周角は等しいから,
      ∠ACP=∠DBP    ---②

① ② から,2組の角が,それぞれ等しいので,
    △PAC∽△PDB
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. AB = CD ならば,AD//BCであることを証明しなさい.
A
B
C
D


仮定より,
     AB = CD     ---①

 AB に対する円周角∠ACBと, CD に対する円周角∠CADについて,
等しい弧に対する円周角は等しいから,①より
    ∠ACB=∠CAD    ---②

②より,平行線の錯角は等しいから,
    AD//BC
余白に記入
@2020    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


△ABDと△AECで,
仮定より, BD = CD 
等しい弧に対する円周角は等しいから,
    ∠BAD=∠EAC    ---①

また, AB に対する円周角は等しいから,
      ∠ADB=∠ACE    ---②

① ② から,2組の角が,それぞれ等しいので,
    △ABD∽△AEC
余白に記入
@2020    http://sugaku.club/