[文字サイズの変更]
 
数学クラブ
円の性質
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
x
74°
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
72°
(1)
(2)
(3)
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [332-01]
2
2点×5
次の図の円Oで, AB を除く円周上に点Pがあるとき,∠AOB=2∠APBであることを証明しなさい.なお,PKは円Oの直径.
O
P
A
B
K


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠AOK=              ---①
    △OPBで,  ∠BOK=              ---②

∠AOB=∠AOKー∠BOKなので,
① ② から,∠AOB=                    

また,∠APB=∠xー∠yだから,

    ∠AOB=      ∠APB
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 1 
 
  3 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
Q
C
D
x
24°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
41°
y
42°
(1)
(2)
(3) x

y
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
53°
40°
36°
51°
(イ)
D
C
A
B
(ウ)
D
C
A
B
38°
60°
56°
26°
(エ)
D
C
A
B
42°
70°
31°
31°
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=60°となる点Pを作図しなさい.   [360-00]
A
B
C
(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
x
86°
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
x
37°
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
59°
x
(1)
(2)
(3)
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
123°
x
y
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
23°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
38°
y
26°
57°
57°
(1) x

y
(2) x

y
(3) x

y
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
50°
20°
x
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
54°
x
(1)
(2)
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります.AD//BCならば, AB = CD であることを証明しなさい.
A
B
C
D


余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図で,△ABE∽△ACDであることを証明しなさい.
A
B
C
D
E


余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
円の性質
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [340-00]
O
P
A
B
x
74°
 ∠x
 
 1 
 =∠AOB
  2 
 ∠x
 
 1 
 =×74=37
  2 
(2) 次の図で,∠xの大きさを求めなさい.   [340-01]
O
P
A
B
x
(3) 次の図で,∠xの大きさを求めなさい.   [340-02]
O
P
A
B
x
72°
 ∠x
 
 1 
 =∠AOB
  2 
 ∠x
 
 1 
 =×72=36
  2 
(1) 37°
(2) 90°
(3) 36°
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [332-01]
2
2点×5
次の図の円Oで, AB を除く円周上に点Pがあるとき,∠AOB=2∠APBであることを証明しなさい.なお,PKは円Oの直径.
O
P
A
B
K
x
y
x
y


△OPAと△OPBは二等辺三角形だから,それぞれの底角を∠x,∠yとすると,
    △OPAで,  ∠AOK= 2∠x     ---①
    △OPBで,  ∠BOK= 2∠y     ---②

∠AOB=∠AOKー∠BOKなので,
① ② から,∠AOB= 2∠x  2∠y 

また,∠APB=∠xー∠yだから,

    ∠AOB= 2 ∠APB
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
3点×3
(1) 1つの円で,円周の
 1 
 
  3 
の大きさの弧に対する円周角は何度ですか.
   [342-00]
O
x
y
中心角 1 °
 ∠y=×360=120
  3 
円周角 1 °
 ∠x=∠y=60
  2 
(2) 次の図で,∠xの大きさを求めなさい.   [343-00]
P
A
B
Q
C
D
x
24°
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [341-00]
x
41°
y
42°
(1) 60°
(2) 24°
(3) x=41°
y=42°
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.   [352-00]
4
完答 3点
次の(ア)〜(エ)で,4点A,B,C,Dが同じ円周上にあるものを選びなさい.
(ア)
D
C
A
B
53°
40°
36°
51°
(イ)
D
C
A
B
(ウ)
D
C
A
B
38°
60°
56°
26°
56°
(エ)
D
C
A
B
42°
70°
31°
31°
(イ) (ウ) (エ)
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
6点×2
(1) 次の図のように,3点A,B,Cがあります.直線ABについて点Cと反対側に,AB⊥CP,∠APB=60°となる点Pを作図しなさい.   [360-00]
A
B
C
D
P
O
l



1. 点Cを通る線分ABの垂線lをひく

2. ABが底辺,点Dが頂点となる正三角形ABDを,直線ABについて点Cと反対側にかく

3. ∠ABD,∠BADの二等分線をそれぞれかき,その交点を点Oとする.AOを半径とする円Oをかく

直線lと円Oの交点のうち,直線ABについて点Oと同じ側にある点が,求める点Pである.


(2) 点Aを通る円Oの接線を作図しなさい.   [361-00]
O
A
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
3点×3
(1) 次の図で,∠xの大きさを求めなさい.   [344-00]
O
P
A
B
x
86°
 中心角=36086=274
 
 1 
 ∠x=×274=137
  2 
(2) 次の図で,∠xの大きさを求めなさい.   [344-01]
O
P
A
B
x
37°
∠APB=90°だから
 ∠BPO=∠APB∠APO=9037=53
 
△BOPは二等辺三角形なので
 ∠x=∠BPO=53
 
(3) 次の図で,∠xの大きさを求めなさい.   [344-02]
O
P
Q
A
B
59°
x
 QB に対する円周角は等しいから
 ∠QAB=∠QPB=59
 
∠APB=90°なので
 ∠x=∠APB∠QPB=9059=31
 
(1) 137°
(2) 53°
(3) 31°
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
(1) 次の図で,∠x,∠yの大きさを求めなさい.   [344-03]
O
P
Q
A
B
123°
x
y
 中心角=2∠APB=2×123=246
 
 ∠x=360246=114
 
 1 
 ∠y=∠x=57
  2 
(2) 次の図で,∠x,∠yの大きさを求めなさい.   [344-04]
y
P
A
B
Q
C
D
x
23°
 ∠y=2∠CQD=2×23=46
 
(3) 次の図で,∠x,∠yの大きさを求めなさい.   [351-00]
D
C
A
B
x
38°
y
26°
57°
57°
∠ABD=∠ACDから,円周角の定理の逆より4点A,B,C,Dは同じ円周上にある.
AB に対する 円周角は等しいから,∠ADB=∠ACB
(1) x=114°
y=57°
(2) x=23°
y=46°
(3) x=38°
y=26°
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×2
(1) 次の図で,∠xの大きさを求めなさい.   [344-05]
F
A
B
D
C
E
50°
20°
x
同じ弧に対する円周角の大きさは等しいので,
    ∠AFB=∠AEB
    ∠BDC=∠BEC
よって
 ∠x=5020=30
 
(2) PA,PBは,円Oの接線です.∠xの大きさを求めなさい.   [344-07]
O
C
P
A
B
54°
x

    °
 ∠AOB=2∠ACB=2×54=108
 
PA,PBは,円Oの接線だから,PA⊥OA,PB⊥OB.
したがって,四角形APBOの内角の和は,
    
 ∠x∠AOB2×90
 
 =360
 
 ∠x
 
 =360(1082×90)
 
 ∠x
 
 =72
 
(1) 30°
(2)
°
 72
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [370-z0]
9
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります.AD//BCならば, AB = CD であることを証明しなさい.
A
B
C
D


仮定AD//BCより,平行線の錯角は等しいから,
    ∠ACB=∠CAD    ---①

 AB に対する円周角∠ACBと, CD に対する円周角∠CADについて

①より,等しい円周角に対する弧の長さは等しいから,
     AB = CD

余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [370-z0]
10
11点 部分点可
次の図で,△ABE∽△ACDであることを証明しなさい.
A
B
C
D
E


△ABEと△ACDで,
 DE に対する円周角は等しいから,
      ∠ABE=∠ACD    ---①

また,共通だから,
      ∠BAE=∠CAD    ---②

① ② から,2組の角が,それぞれ等しいので,
    △ABE∽△ACD
余白に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [370-z0]
11
11点 部分点可
次の図のように,円周上に4点A,B,C,Dがあります. BD = CD のとき,△ABD∽△AECであることを証明しなさい.また,ADとBCの交点をEとする.
E
A
B
C
D


△ABDと△AECで,
仮定より, BD = CD 
等しい弧に対する円周角は等しいから,
    ∠BAD=∠EAC    ---①

また, AB に対する円周角は等しいから,
      ∠ADB=∠ACE    ---②

① ② から,2組の角が,それぞれ等しいので,
    △ABD∽△AEC
余白に記入
@2025    http://sugaku.club/