[文字サイズの変更]
 
数学クラブ
三平方の定理
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
2点×4
(1) xの値を求めなさい.   [381-00]
 1
 
 2
 
 x
 
(2) xの値を求めなさい.   [381-00]
 x
 
 
2
 
 
 
6
 
 
(3) xの値を求めなさい.   [381-00]
 2
 
 x
 
 5
 
(4) 次の長さを3辺とする三角形のうち,直角三角形はどれですか.   [382-00]
    (ア)  
 
10
 327
 
    (イ)  
 
3
 336
 
    (ウ)  
 167
 
    (エ)  
 457
 

(1)
(2)
(3)
(4)
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [380-00]
2
11点 部分点可
∠C=90°の直角三角形ABCと合同な三角形を,次の図のように並べます.四角形ABHGと四角形CDEFが正方形であることから,a2b2c2となることを証明しなさい.
A
B
C
D
E
F
G
H
a
b
c
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
2点×4
(1) 次の長方形の対角線の長さを求めなさい.    [383-00]
 4
 
 3
 
(2) 2辺の長さがの三角形があります.
 1cm7cm
 
この三角形が直角三角形であるためには,残りの1辺の長さは,何cmであればよいですか.   [384-00]
(3) 1辺の長さが
 1
 
正三角形ABCの高さを求めなさい.   [390-00]
B
A
C
 h
 
 1
 
(4) xの値を求めなさい.   [392-00]
 x
 
 
2
 2
 
45°
(1)
(2)
(3)
(4)
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.
4
3点×3
(1) 半径5cmの円があります.円Oの弦ABの長さが,8cmのとき,中心Oから弦ABまでの距離を求めなさい.   [393-00]
O
A
B
H
cm
 8
 
(2) 1辺の長さが
 1
 
正三角形ABCの面積を求めなさい.   [391-00]
B
A
C
 1
 
(3) 次の座標を持つ2点の間の距離を求めなさい.   [394-01]
 A(−86)B(−8−1)
 
(1)
(2)
(3)
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
4点×2
(1) 次の図で,APは,Pを接点とする円Oの接線です.xの値を求めなさい.   [395-00]
また,円Oの半径をとする.
 3
 
A
P
O
 4
 
 x
 
(2) xの値を求めなさい.   [396-00]
B
135°
C
x
 8
 
A
15°
(1)
(2)
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
4点×2
(1) xの値を求めなさい.   [397-30]
A
B
C
D
 2
 
 6
 
 3
 
x

(2) xの値を求めなさい.   [397-20]
A
B
C
D
 7
 
x
 2
 
 6
 

(1)
(2)
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
次の図は直方体です.次の問に答えなさい.   [3A0-00]
A
B
C
D
E
F
G
H


1.ACの長さを AB,BCを使って求めなさい.




2.AGの長さを AB,BC,CGを使って求めなさい.









3.AB=3cm ,BC=2cm ,CG=3cm のとき,AGの長さを求めなさい.
1
2
3
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×3
正四角錐OABCDがあります.底面ABCDは,1辺が2cm の正方形で,他の辺の長さは,すべて4cm です.次の問に答えなさい.   [3A2-00]
A
B
C
D
O
H
4cm
2cm


1.AHの長さを求めなさい.




2.OHの長さを求めなさい.










3.OABCDの体積を求めなさい.
1
2
3
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [3A3-20]
9
9点 部分点可
底面が半径 1cm の円形で,母線の長さが,2cm である円錐の体積を求めなさい.
A
O
H
2cm
1cm
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [3A4-20]
10
9点 部分点可
半径2cmの球Oを,中心Oから,1cmの距離にある平面で切った時,切り口の図形は円になります.この円の円周の長さを求めなさい.
O
A
H
cm
 1
 
@2025    http://sugaku.club/
 
 
数学クラブ
三平方の定理
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [3A4-00]
11
6点×2
次の図は,底面の1辺が,5cm,高さが,7cmの正四角柱です.頂点Aから頂点Eまで,糸を最短距離でかけます.次の問に答えなさい.
A
B
C
D
E
F
G
H


1.かけた糸を,下の展開図に描きなさい.
2.糸の長さを求めなさい.
1 図に記入
2
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト    時間 50分        1/11 ページ
1
次の問に答えなさい.
1
2点×4
(1) xの値を求めなさい.   [381-00]
 1
 
 2
 
 x
 
    
2
2
2
 x=12=5
 
x>0 だから
    
 
5
 x=
 
(2) xの値を求めなさい.   [381-00]
 x
 
 
2
 
 
 
6
 
 
    
2
 
6
2
 
2
2
 x==4
 
x>0 だから
    
 x=2
 
(3) xの値を求めなさい.   [381-00]
 2
 
 x
 
 5
 
    
2
2
2
 x=52=21
 
x>0 だから
    
 
21
 x=
 
(4) 次の長さを3辺とする三角形のうち,直角三角形はどれですか.   [382-00]
    (ア)  
 
10
 327
 
    (イ)  
 
3
 336
 
    (ウ)  
 167
 
    (エ)  
 457
 

(ア)
2
 
10
2
2
    ◯
 3(2)=49=7
 
(イ)
 
3
2
2
2
    ◯
 (3)3=36=6
 
(ウ)
2
2
2
 16=377
 
(エ)
2
2
2
 45=417
 
(1)
 
5
 
 
(2)
 2
 
(3)
 
21
 
 
(4) ア ,イ
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        2/11 ページ
2
次の問に答えなさい.   [380-00]
2
11点 部分点可
∠C=90°の直角三角形ABCと合同な三角形を,次の図のように並べます.四角形ABHGと四角形CDEFが正方形であることから,a2b2c2となることを証明しなさい.
A
B
C
D
E
F
G
H
a
b
c
四角形CDEFの面積を S とする.
四角形CDEFは正方形だから,
    S=(ab)2    ---①

また,四角形CDEFの面積は,4つの直角三角形と正方形ABHGに分けることができるから,
     1 
2
    ---②
 S=4×abc
  2 

① ② から,
    
2
 (ab)
 
 1 
2
 =4×abc
  2 
2
2
 a2abb
 
2
 =2abc
 
2
2
 ab
 
2
 =c
 
空欄に記入
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        3/11 ページ
3
次の問に答えなさい.
3
2点×4
(1) 次の長方形の対角線の長さを求めなさい.    [383-00]
 4
 
 3
 
対角線の長さをx とする.
    
2
2
2
 x=43=25
 
x>0 だから
    
 x=5
 
(2) 2辺の長さがの三角形があります.
 1cm7cm
 
この三角形が直角三角形であるためには,残りの1辺の長さは,何cmであればよいですか.   [384-00]
残りの1辺の長さをx cm とする.
直角をはさむ2辺の長さがのとき
 1cm7cm
 
    
2
2
2
 x=17=50
 
x>0 だから
    
 
2
 x=5
 
   
斜辺の長さがのとき
 7cm
 
    
2
2
2
 x=71=48
 
x>0 だから
    
 
3
 x=4
 
(3) 1辺の長さが
 1
 
正三角形ABCの高さを求めなさい.   [390-00]
B
A
C
 h
 
 1
 
 1 
 
  2 
    
2
2
 1 
2
 3 
 h=1()=
  2  4 
x>0 だから
     1 
 
3
 h=
  2 
(4) xの値を求めなさい.   [392-00]
 x
 
 
2
 2
 
45°
    
 
2
 x2
 
 
2
 =1
 
 x
 
 =2
 
(1)
 5
 
(2)
 
2
 
3
 5cm4cm
 
(3)
 1 
 
3
 
  2 
(4)
 2
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        4/11 ページ
4
次の問に答えなさい.
4
3点×3
(1) 半径5cmの円があります.円Oの弦ABの長さが,8cmのとき,中心Oから弦ABまでの距離を求めなさい.   [393-00]
O
A
B
H
cm
 8
 
cm
 5
 
x
    
2
2
2
 AO=OHAH
 
OHを x とすると.
    
2
2
2
 x=54=9
 
x>0 だから
    
 x=3
 
(2) 1辺の長さが
 1
 
正三角形ABCの面積を求めなさい.   [391-00]
B
A
C
 1
 
 h
 
 1 
 
  2 
    
2
2
 1 
2
 3 
 h=1()=
  2  4 
h>0 だから  1 
 
3
 h=
  2 
面積
 S
 
 1  1 
 
3
 =×1×
  2  2 
 S
 
 1 
 
3
 =
  4 
(3) 次の座標を持つ2点の間の距離を求めなさい.   [394-01]
 A(−86)B(−8−1)
 
    
2
 AB
 
2
2
 ={−8(−8)}(−16)
 
 
 
2
2
 =0(−7)
 
2
 AB
 
 =49
 
AB>0 だから
    
 AB=7
 
(1)
cm
 3
 
(2)
 1 
 
3
 
  4 
(3)
 7
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        5/11 ページ
5
次の問に答えなさい.
5
4点×2
(1) 次の図で,APは,Pを接点とする円Oの接線です.xの値を求めなさい.   [395-00]
また,円Oの半径をとする.
 3
 
A
P
O
 4
 
 x
 
    
2
2
2
 x=34=25
 
x>0 だから
    
 x=5
 
(2) xの値を求めなさい.   [396-00]
B
135°
C
x
 8
 
A
15°
H
30°
45°
CBを延長した直線に,頂点Aからに垂線を引き,その交点をHとする.
△ACHは,30°,60°,90°の直角三角形だから,
 AH=4
 
△ABHは,45°,45°,90°の直角二等辺三角形だから,
 
2
 x=4
 

(1)
 5
 
(2)
 
2
 4
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        6/11 ページ
6
次の問に答えなさい.
6
4点×2
(1) xの値を求めなさい.   [397-30]
A
B
C
D
 2
 
 6
 
 3
 
x
直線BDを引く.
直角三角形ABDについて,
    
2
 BD
 
2
2
 =26
 
 
 
 =40
 
直角三角形BCDについて,
    
2
 x
 
2
2
 =BD3
 
2
 x
 
 =31
 
x>0 だから
    
 
31
 x=
 

(2) xの値を求めなさい.   [397-20]
A
B
C
D
 7
 
x
 2
 
 6
 
H
 2
 
 4
 
頂点Dから BCに垂線を引き,その交点をHとする.
直角三角形DHCについて,
HC=BC-ADだから,
    
2
 x
 
2
2
 =DHHC
 
 
 
2
2
 =7(62)
 
2
 x
 
 =65
 
x>0 だから
    
 
65
 x=
 

(1)
 
31
 
 
(2)
 
65
 
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        7/11 ページ
7
次の問に答えなさい.
7
3点×3
次の図は直方体です.次の問に答えなさい.   [3A0-00]
A
B
C
D
E
F
G
H


1.ACの長さを AB,BCを使って求めなさい.

△ABCの直角三角形から
    
2
2
2
        ---①
 AC=ABBC
 
AC>0 だから
    
 
2
2
ABBC
 AC=
 



2.AGの長さを AB,BC,CGを使って求めなさい.

△ACGに着目すると,∠ACG=90°だから
    
2
2
2
 AG=ACCG
 
①より
    
2
2
2
2
 AG=ABBCCG
 
AG>0 だから
    
 
2
2
2
ABBCCG
 AG=
 


3.AB=3cm ,BC=2cm ,CG=3cm のとき,AGの長さを求めなさい.
    
 AG
 
 
2
2
2
ABBCCG
 =
 
 AG
 
 
2
2
2
323
 =
 
 AG
 
 
22
 =
 
1
 
2
2
ABBC
 AC=
 
2
 
2
2
2
ABBCCG
 AG=
 
3
 
22
cm
 
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        8/11 ページ
8
次の問に答えなさい.
8
3点×3
正四角錐OABCDがあります.底面ABCDは,1辺が2cm の正方形で,他の辺の長さは,すべて4cm です.次の問に答えなさい.   [3A2-00]
A
B
C
D
O
H
4cm
2cm


1.AHの長さを求めなさい.
正方形ABCDの対角線ACの長さは,
    
 
2
 AC=AB
 
正方形ABCDの対角線は,中点で交わるから,AHの長さは
    
 AH
 
 1 
 =AC
  2 
 
 
 1 
 
2
 =AB
  2 
 
 
 1 
 
2
 =×2
  2 
 AH
 
 
2
 =
 

2.OHの長さを求めなさい.
△OAHに着目すると,∠AHO=90°だから
    
2
 OH
 
2
2
 =OAAH
 
 
 
2
 
2
2
 =4
 
 
 
 =14
 
OH>0 だから
    
 OH
 
 
14
 =
 

3.OABCDの体積を求めなさい.
正四角錐OABCDの体積をVとすると,
    
 V
 
 1 
2
 =ABOH
  3 
 
 
 1 
2
 
14
 =×2×
  3 
 
 
 4 
 
14
 =
  3 
1
 
 
2
cm
 
 
2
 
 
14
cm
 
 
3
  4 
 
14
cm3
 
  3 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        9/11 ページ
9
次の問に答えなさい.   [3A3-20]
9
9点 部分点可
底面が半径 1cm の円形で,母線の長さが,2cm である円錐の体積を求めなさい.
A
O
H
2cm
1cm

[OHの長さ(円錐の高さ)を求める]
    
2
 OH
 
2
2
 =OAAH
 
 
 
2
2
 =21
 
 
 
 =41
 
 
 
 =3
 
OH>0 だから
    
 
3
 OH=
 


[円錐の体積を求める]
円錐の体積をVとすると,
 1     だから
 V=×底面積×高さ
  3 
    
 V
 
 1 
2
 
3
 =×π×1×
  3 
 V
 
 1 
 
3
 =π
  3 

 1 
 
3
cm3
 π
  3 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        10/11 ページ
10
次の問に答えなさい.   [3A4-20]
10
9点 部分点可
半径2cmの球Oを,中心Oから,1cmの距離にある平面で切った時,切り口の図形は円になります.この円の円周の長さを求めなさい.
O
A
H
cm
 1
 
cm
 2
 


[切り口の円の半径を求める]
    
2
2
2
 AO=OHAH
 
AHを r とすると.
    
2
2
2
 r=21=3
 

r>0 だから
    
 
3
 r=
 


[切り口の円周の長さ l を求める]
    
 l
 
 =2πr
 
 
 
 
3
 =2π×
 
 
 
 
3
 =2π
 
 
3
cm
 2π
 
@2025    http://sugaku.club/
 
 
数学クラブ
【解答例】
定期試験対策テスト        11/11 ページ
11
次の問に答えなさい.   [3A4-00]
11
6点×2
次の図は,底面の1辺が,5cm,高さが,7cmの正四角柱です.頂点Aから頂点Eまで,糸を最短距離でかけます.次の問に答えなさい.
A
B
C
D
E
F
G
H


1.かけた糸を,下の展開図に描きなさい.
最短距離で糸をかけるから,展開図上では 直線になる.展開図上の点Pは,正四角柱における頂点Eです.また,展開図上の点Qは,正四角柱における頂点Aです.

2.糸の長さを求めなさい.

△APQに着目すると,∠AQP=90°だから
    
2
2
2
 AP=AQPQ
 
 AQ=4×5=20
 
 PQ=7
 
より
    
2
 AP
 
2
2
 =207
 
2
 AP
 
 =449
 
AP>0 だから
    
 
449
 AP=
 
1 図に記入
2
 
 
449
cm
 
 
@2025    http://sugaku.club/